Authors
Amanda Scott, Clinical Placement Coordinator
Deirdre Cooney, former Staff Nurse, St Peter’s Ward
(In collaboration with Eileen Morrin, Clinical Nurse Specialist Neonatology
Eileen Tiernan, Lorraine Percy and Regina Keogh Clinical Nurse Facilitators,
PICU Education Team, Dr Pamela O Connor and Consultant Neonatologist)

1st Edition
Issue Date: August 2012,
Review Date: August 2015

Contents

<table>
<thead>
<tr>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>2</td>
</tr>
<tr>
<td>2. Determining the Need for Phototherapy</td>
<td>5</td>
</tr>
<tr>
<td>3. Treatment of Jaundice with Phototherapy Lamps</td>
<td>7</td>
</tr>
<tr>
<td>4. Treatment of Jaundice with a Biliblanket</td>
<td>11</td>
</tr>
<tr>
<td>5. Discontinuing Phototherapy</td>
<td>13</td>
</tr>
<tr>
<td>6. References</td>
<td>14</td>
</tr>
<tr>
<td>7. Appendices</td>
<td>16</td>
</tr>
</tbody>
</table>
1. Introduction

What is Jaundice?
Jaundice is a common condition in newborn infants and is a clinical sign of excess conjugated or unconjugated bilirubin (hyperbilirubinaemia). It is characterised by a yellow colouring of the infant’s skin and other tissues caused by high levels of circulating unconjugated bilirubin due to the breakdown of red blood cells. Jaundice is present when serum bilirubin is > 85 micromols/l. There is a 60% incidence of jaundice in full term infants (1st week) and 80% incidence in preterm infants (Hellowell and Crathern 2011).

Pathophysiology of Jaundice:
During red cells breakdown, haemoglobin is converted into bilirubin and removed to the liver. Conjugated bilirubin is water soluble and is excreted by the liver (Alexander 2010). However unconjugated bilirubin is not water soluble and it cannot be excreted by the liver and it is toxic to the body in high levels. Physiological jaundice is due to a high level of unconjugated bilirubin together with an immature liver which causes a build up of unconjugated bilirubin in the blood (hyperbilirubinaemia). Bilirubin is pigmented which causes a yellowing of the infant’s skin and tissues. A low level of bilirubin is usually not a concern as most infants will experience a certain amount of physiological jaundice which results in no problems. However, if unconjugated bilirubin levels rise rapidly above a safe level and are left untreated the bilirubin can cross the blood-brain barrier and be deposited in the brain stem (basal ganglia) and cerebellum, disrupting cellular metabolism causing irreversible brain damage (bilirubin encephalopathy) leading to kernicterus. Bilirubin encephalopathy occurs first and later kernicterus (American Academy of Pediatrics (AAP) 2004, Macqueen et al 2012).

Causes of Jaundice
• **Physiological Jaundice:** Occurs in 60% of term and 80% of preterm infants (AAP, 2004, Chowdhury 2007). The newborn has a high level of haemoglobin combined with a short red cell life leading to a high rate of haemolysis whilst the body mass bilirubin production is more than double in the neonate. This combined with other physiological changes that occur during transition from intra to extra-uterine life can force bilirubin to be processed at a challenging rate for the newborn. Jaundice usually occurs at 2-3 days of life and has resolved by 7-14 days of life (University of Michigan Health System, UMHS 2005).
• **Breastfeeding Jaundice:** Occurs in 5-10% of newborns when the infant does not drink enough breast milk and is similar to physiological jaundice but is more pronounced. The mother may require assistance with breast feeding.
• **Breast-Milk Jaundice:** This occurs in 1-2% of breast fed infants and is caused by a substance that is produced in the breast milk. Enzyme activity in the infant’s liver, slows the breakdown and secretion of bilirubin. Jaundice starts at 4-7 days of age and can last 3-10 weeks (occasionally up to 16 weeks). Breastfeeding does not need to be discontinued as there are no recorded cases of kernicterus resulting from this cause. The infant should however continue to be monitored for signs of improvement / worsening jaundice.
• **ABO Blood Group Incompatibility and Rhesus Incompatibility (Haemolysis):** These can occur if the mother produces antibodies that destroy the newborn’s red cells, resulting in haemolysis of the infant’s blood. This leads to a sudden build up of bilirubin in the infant’s circulation during the first 24hrs of life. ABO incompatibility is less severe than Rhesus Incompatibility, however both varieties present with the most serious type of jaundice (UMHS 2005).
• **Also Other Pathological Causes:** i.e. sepsis, endocrine /metabolic disorders, bile duct obstruction, G6PD deficiency.

Signs and Symptoms of Jaundice
- Yellowing of skin colour, soft palate and sclera of eyes
- Lethargy
- Poor feeding
- Darkened urine
- Dark or grey stools
Jaundice is usually observed in the face and progresses gradually to the trunk and extremities. Therefore a thorough examination in bright natural light should be carried out where possible to determine the extent of jaundice.

Risk Factors for Jaundice
- Prematurity (under 38 weeks gestation)
- Hypoalbuminaemia
- Hypoxia
- Dehydration
- Hypothermia
- Acidosis
- Polycythemia
- Haemolytic Disease
- Bruising
- Hypoglycemia
- Hyperlipidaemia

Nurse Practice Committee
August 2012
Nursing Practice Committee August 2012

- Sepsis
- Previous sibling with neonatal jaundice requiring phototherapy
- Exclusive breast feeding
- Visible jaundice within 24 hours

(National Institute for Health and Clinical Excellence (NICE) 2010, Macqueen et al 2012)

Diagnosis of Jaundice
A serum bilirubin level will be used in conjunction with signs and symptoms of jaundice. The serum bilirubin level along with the gestational age and postnatal age will be plotted on the graph developed by (NICE) 2010. This will be plotted by the neonatal/medical team.

NB: It is necessary to proceed more cautiously if the serum is above certain levels (i.e. conjugated bilirubin level greater than 25micromol /litre) due to the potential consequences of serious potentially irreversible liver disease (NICE 2010).

Exchange Transfusion
In severe cases of increased bilirubin in a low birth weight (LBW) infant less than 24 hours old, an exchange transfusion may be preferred over phototherapy. An exchange transfusion may be the best option with very high serum bilirubin concentrations, regardless of age and weight (A.D.A.M. 2009). Exchange transfusion is a rapid and effective method of controlling unconjugated hyperbilirubinemia and is used when phototherapy has been unsuccessful and there is a high risk of kernicterus developing. Such infants are usually transferred to PICU as twice the infants calculated blood volume is progressively replaced with compatible whole blood, thereby removing bilirubin. Threshold for exchange transfusion is serum bilirubin > 450mmols/ l (NICE 2010). The consultant neonatologist will make the final decision regarding the need for exchange transfusion in conjunction with the infant’s medical and clinical condition, age, and serum bilirubin levels.

Audiology Screening for Infants with Hyperbilirubinaemia
High levels of bilirubin can damage the auditory nerve (similar to effects of high levels of gentamicin). When a bilirubin level is 400 mmols/l or greater, audiology screening is carried out as soon as possible and if damage to the auditory nerve is detected, the infant will be referred to DeafHear (Miletin 2011). DeafHear is an organisation which provides a range of services to deaf and hard of hearing people and their families. This application to DeafHear must be performed urgently before 8 weeks of age as late applications are not accepted for this disorder by DeafHear. In the rare event of intravenous immunoglobulin (IVIG) with levels 400mmols/L or greater or an exchange transfusion is required, an urgent audiology screening should be carried out.

Acute Bilirubin Encephalopathy / Kernicterus
Acute bilirubin encephalopathy describes the acute manifestations of bilirubin toxicity seen in the first week of life (AAP 2004). Kernicterus is a pathologist's term describing the yellow deposits and brain cell death from extremely high levels of bilirubin, generally 425-510 mmols/l. It usually refers to the chronic or permanent clinical sequelae of bilirubin toxicity. Kernicterus can lead to cerebral palsy, learning difficulties and nerve deafness and it can be fatal in up to 75% of cases. Although a rare occurrence, reported cases of kernicterus still occur (AAP 2004, Fellows 2005).

Signs and Symptoms of Acute Bilirubin Encephalopathy / Kernicterus
- Abnormalities of tone, including increased tone (hypertonia), decreased tone (hypotonia)
- Arching the neck (retrocollis) or trunk (opisthotonus)
- Lethargy, difficulty in arousing the infant
- High-pitched cry
- ‘Sunset eyes’ once seizing
- Irritability
- Fever
- Seizures
- Poor feeding / suck
- Sensorineural hearing loss

Kernicterus
- Athetoid cerebral palsy
- Cognitive and motor delay
- Extrapyramidal cerebral palsy disturbances
- Auditory dysfunction
- Gaze palsy
- Dental enamel dysplasia

(AAP 2004, Juretschke 2005, NICE 2010)

Risk Factors for Adverse Sequale of Kernicterus
- Serum bilirubin > 340 mmols/l and < 37 weeks gestation
- Rapidly rising serum bilirubin > 8.5 mmols/l per hour
- Clinically signs and symptoms of kernicterus / acute bilirubin encephalopathy (NICE 2010).
Pathological i.e. sepsis, endocrine, metabolic disorders, G6PD deficiency and bile duct obstruction
2.0 Determining Need for Phototherapy

Phototherapy is the application of fluorescent lights over the infant’s skin to assist in reducing the serum bilirubin level in the infant’s blood (Alexander 2010). Blue light waves 425-475nm (nanometers) from the fluorescent lights are absorbed by the infant’s skin and blood; this converts the unconjugated bilirubin to conjugated bilirubin which can be eliminated by the body via urine and stool, thereby reducing the need for exchange transfusion and preventing the onset of kernicterus. The Giraffe Incubator has a SPOT PT Lite™ halogen phototherapy light. This is a high intensity natural broad spectrum white light which provides 30-40microwatts per centimetre squared per nanometer (uW/cm²/nm) in the blue-green spectrum at 38 centimetres (cms). Advantages include improved visualisation and assessment of the infant i.e. cyanosis, however it is less effective and only a fraction of light is absorbed by bilirubin compared to traditional blue light in the treatment of jaundice. Blue light is predominantly in the blue green spectrum and this light penetrates the infant's skin more easily and is absorbed maximally by bilirubin (Seidman et al 2003, AAP 2004, Chowdhury et al 2007, Alexandra 2010, Skinner 2010).

The effectiveness of phototherapy depends on the degree of the infant’s surface area exposed to the lights. Single phototherapy is when one phototherapy unit is used. Double and triple phototherapy indicates the use of 2 or 3 units concurrently. Using two or more units at one time allows as much of the infant's body-surface as possible to be exposed to the light. The light source would usually be placed both above (overhead lights) and beneath the infant (biliblanket) (Sarici et al 2000, AAP 2004, Hansen 2011).

A biliblanket is a fibre-optic light source transmitted via a cable which delivers a high intensity uniform light.

The duration of phototherapy treatment will be determined by the level of serum unconjugated bilirubin. Phototherapy may be discontinued when levels fall to at least 50micromols/l below threshold for phototherapy or as determined by the neonatology consultant.

<table>
<thead>
<tr>
<th>ACTION</th>
<th>RATIONALE & REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognise the possible need for phototherapy based on risk factors listed above and blood testing.</td>
<td>This will assist in the prompt and timely detection and treatment of jaundice.</td>
</tr>
<tr>
<td>Perform a physical assessment of the infant to assess for the presence of jaundice i.e. following performing vital signs.</td>
<td>Identifying signs will assist in determining the presence of jaundice</td>
</tr>
<tr>
<td>Remove the infant’s clothing and nappy</td>
<td>To perform an accurate assessment. Jaundice is usually first observed in the face and progresses gradually to</td>
</tr>
</tbody>
</table>
Where possible perform assessment in bright natural daylight.

Jaundice can be detected by blanching the skin with digital pressure.

The gums and sclera of the eyes should be observed.

Where possible perform assessment in bright natural daylight.	the trunk and extremities. Therefore a thorough examination should be carried out to determine the extent of jaundice (AAP 2004).
Jaundice can be detected by blanching the skin with digital pressure.	Artificial light can make it more difficult to accurately assess for jaundice (Alexander 2010).
The gums and sclera of the eyes should be observed.	This reveals the underlying colour of the skin and surrounding subcutaneous tissue and is especially useful when examining non-Caucasian infants (AAP 2004).
Assessing these areas for jaundice is effective across all skin tones (Alexander 2010, NICE 2010).	

Observe for clinical features of jaundice as identified in Section 1

Identifying signs will assist in determining presence of jaundice (Cohen 2006).

A serum bilirubin level will be taken on all infants where jaundice is observed.

Level must be determined prior to commencing phototherapy as prophylactic phototherapy before jaundice is not considered effective (Truman 2003, Hansen 2011).

The serum bilirubin level along with the gestational age and postnatal age will be plotted on the graph developed by the National Institute for Health and Clinical Excellence in mmols / litre (NICE 2010). Appendix 1

This will determine and indicate need and level of treatment required (NICE 2010).

Document all nursing assessments, nursing care and bilirubin levels in nursing notes as appropriate.

To maintain accountability through accurate recording of clinical practice (An Bord Altranais 2002).
3.0 Treatment of Jaundice with Conventional Phototherapy Lamps and Nursing Management

Equipment

- Phototherapy lamps
- Incubator (warmed to appropriate temperature) see thermoregulation guidelines
- Eye shields
- Scissors
- White linen
- Eye care tray
- Nappy scales (to accurately measure output)

<table>
<thead>
<tr>
<th>ACTION</th>
<th>RATIONALE & REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The decision to commence phototherapy is made by the neonatologist. Explain the need for phototherapy and the functions of the equipment to the parents / guardians as clinically indicated. Reassure them that their baby can be removed from the incubator for feeding and that they may still be involved in their infant’s care as clinically indicated. Provide written information if appropriate.</td>
<td>Providing explanations and reassurance can reduce stress and anxiety whilst encouraging bonding (Macqueen et al 2012).</td>
</tr>
<tr>
<td>Decontaminate hands prior to commencing phototherapy and/or attending to care needs of the infant. Parents should also be advised on hand-washing techniques.</td>
<td>Prevention of cross infection (HSE 2009, Infection Control Department 2010, 2011a).</td>
</tr>
<tr>
<td>Temperature The infant will be nursed in an incubator or radiant warmer with only a nappy in place. The incubator should be dressed with white linen. The infant’s temperature should be monitored and recorded at least 4 hourly or more frequently as clinically indicated. Observe skin temperature by “warm to touch” method and by peripheral skin probe measurement depending on clinical indication. Monitor and record incubator temperature hourly.</td>
<td>To ensure maximum exposure of the infant to phototherapy. A ‘neutral thermal environment’ can be achieved and maintained in an incubator / radiant warmer whilst having optimum exposure to lights. This allows for optimum reflection of phototherapy lights (NICE 2010). To ensure infant does not become cold stressed, hypothermic or hyperthermic due to removal of clothing or exposure to phototherapy lights (Walker et al 2007; OLCHC 2011c). Environmental Hyperthermia can occur in an enclosed incubator space (OLCHC 2011c) To monitor for incubator temperature fluctuations.</td>
</tr>
<tr>
<td>Position The phototherapy lamp should be positioned a minimum: 38cms (15inches) Giraffe Incubator Spotlight 25cms (10inches) Medela Phototherapy Lamp from the infant. NB: There should be a 3cms distance between light and incubator.</td>
<td>This is the optimum distance to allow effective use of the phototherapy unit. The spectral irradiance (intensity) of the light is reduced when the distance is increased, thus slowing bilirubin removal and reducing effectiveness of the phototherapy (Hansen 2011). Spot phototherapy lamp may increase risk of burns if it is positioned closer than the recommended manufacture distance (Wentworth 2005, GE Healthcare 2006, Alexander 2010, Medela 2011). When the lamp is used with an incubator there must be enough room between the devices to ensure</td>
</tr>
</tbody>
</table>
One or more units may be used at one time. The lamp should be positioned to allow for the coverage of the greatest surface area of the infant’s body. To increase spectral irradiance (AAP 2004).

| Nurse infant supine or prone if indicated with maximum skin exposure to the phototherapy lights | To promote effective phototherapy treatment. |
| Reposition the infant regularly during phototherapy. Be aware of infant positional boundaries pertaining to very sick and premature infants | To prevent skin breakdown and the development of pressure sores (Cohen 2006, Alexander 2010). |

Eyes
Eye shields (opaque) must be placed over the infant’s eyes at all times during phototherapy.

As a prophylaxis and to protect against retinal damage that can occur due to irradiance from phototherapy light (Wentworth 2005, Hansen 2011, Stanford School of Medicine 2011). Ostrowski et al 2000 warns that irradiance may still be high within the eye protectors.

The eye shields should be cut to the appropriate size and secured with the Velcro fastening.

Ensure they do not slip or too tight.

To ensure safe and appropriate use to protect eyes as per manufacturer’s instructions.

Ensure the eye patches are not applied too tight, as they may apply undue pressure to the infant’s delicate eye (Stokowski, 2011)

![Figure 2: Infant wearing Eye Shields (OLCHC)](image)

NB: Ensure the phototherapy unit is switched off before removing the eye shields.

To protect against retinal damage that can occur due to irradiance from phototherapy light (Wentworth 2005, Hansen 2011).

Fluids
Monitor the infant’s intake and output closely. Weigh nappies to monitor output.

Maintain strict fluid balance chart.

The infant may experience poor feeding due to lethargy caused by hyperbilirubinemia and may require enteral feeding for a short period (Alexander 2010).

Refer infant to dietician as clinically indicated

To ensure adequate nutrition / calorie intake to maintain enzyme activity for degeneration of bilirubin.

Discuss the infants’ fluid requirements with neonatologist.

Phototherapy increases insensible water loss by 30 - 50% and poor hydration also slows bilirubin excretion.
<table>
<thead>
<tr>
<th>The fluid intake may need to be increased i.e. 20 – 30% (Boyd 2004, Alexander 2010).</th>
<th>The infant’s weight should be performed daily. This aids with assessing fluid loss and calculating fluid requirements (Alexander 2010).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide the mother who is breast feeding with the necessary support and advice to allow her to continue breastfeeding or to express milk if required. The infant may need to be breastfed 8-12 times a day.</td>
<td>Frequent feeding may help to break down the bilirubin if the cause of the jaundice is due to breast milk or breastfeeding (AAP 2004, Alexander 2010). It can also promote bonding. The newborn stomach has a capacity of 30mls approximately.</td>
</tr>
<tr>
<td>Observe for frequent loose green stools.</td>
<td>Stools may be loose and green due to the enhanced excretion of unconjugated bilirubin in the stool from the phototherapy treatment. Increased faecal water loss may necessitate fluid supplementation (Alexander 2010).</td>
</tr>
<tr>
<td>Skin Care Cleanse skin thoroughly and change nappies when soiled. The use of creams, lotions or oils on the infant’s skin is not recommended while undergoing phototherapy; however a barrier cream may be applied to the nappy area to main skin integrity.</td>
<td>To prevent nappy rash and maintain skin integrity (O’Brien 2007). These may cause burning to the skin (Alexander 2010).</td>
</tr>
<tr>
<td>Parents Encourage parents to be involved in care</td>
<td>To promote bonding and facilitate family centred care (Skinner 2010). Difficulties in bonding may occur due to limitations in place as a result of phototherapy treatment.</td>
</tr>
<tr>
<td>Cluster care as much as possible.</td>
<td>To ensure maximum exposure to phototherapy and minimal disruption to the infant (Alexander 2010).</td>
</tr>
<tr>
<td>Occupational Safety Avoid prolonged exposure of nurses to blue phototherapy lights. Caution in following groups: - Pre existing ocular condition i.e. macular degeneration - Diabetic or other conditions predisposing to retinal damage. - Taking photo sensitising medication - 55 years</td>
<td>Headaches and eye irritation have been reported with prolonged contact. The retina may be harmed in some cases (Medela 2011, Stanford School of Medicine 2011). Nurses may be at increased risk of adverse effects in these identified groups (Medela 2011)</td>
</tr>
<tr>
<td>NB: Consider proximity of infant to other infants in the ward / unit. Consider using a screen.</td>
<td>Phototherapy lights can be severe on their eyes especially at night time as light intensifies. The lamp body in the Medela Phototherapy Lamp is equipped with a specially mirrored screen that directs light onto the child and limits light spread. This improves the therapeutic effect and protects surroundings from disturbing blue light (Medela 2011)</td>
</tr>
<tr>
<td>Monitoring Serum Bilirubin Obtain 6 -24 hourly serum bilirubin level as determined by age and clinical condition of the infant as clinically indicated, following commencing phototherapy Turn off lights prior to obtaining sample.</td>
<td>To monitor and evaluate the effectiveness of treatment (Royal Woman’s Hospital 2007, NICE 2010). Haemolysis can give false lower results (Skinner</td>
</tr>
</tbody>
</table>
If serum bilirubin levels do not start to decrease or stabilise following commencement of phototherapy, inform neonatal / medical team immediately.

Document all nursing assessment, nursing care and serum bilirubin levels in nursing notes as appropriate.

Utilise NICE serum bilirubin level threshold chart for the gestational age of the infant.

NB: Further advice should be obtained and followed in relation to care for babies with a conjugated bilirubin level greater than 25micromol/litre.

Medical Investigations
Further laboratory testing varies on the infant's specific situation and test results, i.e. the possible cause of the jaundice should be sought for babies who require treatment or whose total bilirubin levels are rising more rapidly than expected. Tests that may be done include:

- Complete full blood count (FBC) including packed cell volume (PCV), white cell count (WCC) and reticulocyte count
- Coomb's test
- TORCH screening
- Measurement of levels of specific types of bilirubin
- Blood group of mother and infant
- Albumin level -. Low albumin levels may increase the risk of damage from excessive jaundice
- Thyroid function and LFTs in cases of prolonged jaundice
- Glucose-6-phosphate dehyrogenase (G6PD) screening (31% of kernicterus patients have G6PD deficiency)
- In suspected sepsis i.e. blood cultures, Polymerase Chain Reaction (PCR)
- Urine for metabolic screening

This may indicate a need for continuous multiple phototherapy with no interruption for feeding (NICE 2010).

This may indicate serious liver disease. (NICE 2010).

This may indicate a need for continuous multiple phototherapy with no interruption for feeding (NICE 2010).

To maintain accountability and continuity of care through accurate recording of clinical practice (An Bord Altranais 2002).

(NICE 2010).

4. Treatment of Jaundice with a ‘Biliblanket’

Equipment
- Incubator / radiant warmer/ cot (Incubator should be warmed to appropriate temperature)
- Light source box with fibre optic biliblanket (Ohmeda Biliblanket)
- Disposable cover
- Nappy scales (to accurately monitor output)

The Biliblanket has been in use since 1990 and is an effective and safe method of treating phototherapy. A fibre optic light source is transmitted via a cable which delivers a high intensity of uniform light (blue halogen) only and there is no ultraviolet light. The potential complications of conventional phototherapy are minimised.

![Figure 3: Ohmeda Biliblanket, Bilblanket Plus (GE Healthcare 2010)](image)

Advantages of the Biliblanket
- Infant can be held with no discontinuation of treatment
- Can be nursed in cot instead of incubator
- Encourages infant/maternal bonding
- Reduced heat/electrical dangers compared to overheat phototherapy
- Reduced insensible water loss compared to overheat phototherapy
- Blanket more flexible/comfortable
- No discontinuation of treatment for procedures
- Compact and easily transported

<table>
<thead>
<tr>
<th>ACTION</th>
<th>RATIONALE & REFERENCE</th>
</tr>
</thead>
</table>
| The biliblanket should NOT be used when:
 - Infant is <28 weeks
 - Infant has broken/reduced skin integrity or is at risk of pressure sores |
<p>| There is a risk of dermal damage |
| Explain the need for phototherapy and the functions of the equipment to the parents/ guardians as clinically indicated. |
| Providing explanations and reassurance can reduce stress and anxiety whilst encouraging bonding (Macqueen et al 2012). |
| Reassure parents/guardians that their baby can be removed from the incubator/radiant warmer/cot for feeding and that they may still be involved in their infant’s care as clinically indicated. |
| Provide written information as appropriate. |</p>
<table>
<thead>
<tr>
<th>Decontamination of hands should be carried out prior to commencing phototherapy and/or attending to care needs of the infant.</th>
<th>Prevention of cross infection (HSE 2009, Infection Control Department 2010, 2011a).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parents/ guardians should also be advised on hand-washing techniques.</td>
<td></td>
</tr>
<tr>
<td>The light source box for the biliblanket should be placed on a firm flat surface. NB: The cot or top of incubator are not suitable places to position the box.</td>
<td>To ensure health and safety (OLCHC 2011b). The phototherapy unit should not be placed on the same surface as the infant due to the electrical current.</td>
</tr>
<tr>
<td>A disposable cover should be placed over the fibre-optic pad of the biliblanket as per manufacturer's guidelines. Ensure the illumination side of the panel faces the correct way. This should be changed as required.</td>
<td>To prevent cross infection (Infection Control Department 2011a).</td>
</tr>
<tr>
<td>The fibre-optic pad must be placed directly on the skin. Clothing may be worn over this.</td>
<td>By facilitating maximum exposure to the biliblanket, the breakdown of bilirubin should occur at a faster rate (Maisels 1996). To maintain temperature within normal ranges and provide dignity for infant by dressing in appropriate clothing.</td>
</tr>
<tr>
<td>There are 3 light settings on the unit: - Low - Medium - High</td>
<td>To gain optimum light from source (UMHS 2005).</td>
</tr>
<tr>
<td>The setting at which the intensity of the light box should be set must be clarified with the neonatal team and documented in medical notes.</td>
<td></td>
</tr>
<tr>
<td>The infant does not require eye protection while on biliblanket however the infant's eyes should not be exposed to the covered light pad</td>
<td>The light can be toxic to the immature retina of a newborn's eyes</td>
</tr>
<tr>
<td>Ensure the infant is placed on pad only and not the lead from the phototherapy unit.</td>
<td>To prevent pressure areas developing on the infant's skin.</td>
</tr>
<tr>
<td>The light pad may be left in situ during feeding, changing nappies and cuddling the infant</td>
<td>Ensures continuous exposure to the light source. The use of fibre optic blankets will also permit close and more frequent contact between parents and infants (Maisels and Watchko 2003, Mills and Tudehope 2006).</td>
</tr>
<tr>
<td>Monitor temperature, intake and output, skin integrity and serum bilirubin levels as above</td>
<td></td>
</tr>
</tbody>
</table>
5. Discontinuing Phototherapy

<table>
<thead>
<tr>
<th>ACTION</th>
<th>RATIONALE & REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continue to observe for signs of jaundice once phototherapy has been discontinued. Check serum bilirubin levels 6-12 hours post cessation of treatment and as clinically indicated.</td>
<td>To monitor for rebound jaundice which may require further phototherapy (NICE 2010, Hansen 2011, Macqueen et al 2012)</td>
</tr>
<tr>
<td>The neonatal medical team should explain the risk of rebound jaundice to the infant’s parents as clinically indicated.</td>
<td>This is a rare occurrence however rebound jaundice may occur when phototherapy has been discontinued and is due to a surge in bilirubin levels. Blood tests and further phototherapy may be required. Explanations will help relieve parental/guardian anxiety should rebound jaundice occur.</td>
</tr>
<tr>
<td>Continue to regularly assess and monitor the infant’s peripheral and core temperature after phototherapy has been discontinued. Ensure adequate clothing/blankets are in place without over heating</td>
<td>Phototherapy lights are a heat source therefore the infant may become develop cold stress or hypothermic when the phototherapy lights / biliblanket is discontinued. Adhere to the nursing guidelines for transfer of infant from incubator to cot (OLCHC 2011c).</td>
</tr>
</tbody>
</table>

Storage and Maintenance of Phototherapy Lamps

When more than one phototherapy lamp is required, additional lamps can be accessed from clinical engineer department. The lamp bulbs are checked 6 monthly by the clinical engineers as they loose their effectiveness over time. A record of their use is maintained and manufacturer’s recommendations for changing bulbs followed. The health care assistants on the ward will decontaminate the units as per hospital policy (Infection Control Department 2006).
6. REFERENCES

Health Service Executive (2009) Health Protection Surveillance Centre (HPSC) *Strategy for the Control of Antimicrobial Resistance in Ireland; Guidelines for the antimicrobial stewardship in hospitals in Ireland, HSE Dublin Ireland.

Accessed (December 7th 2011).

Appendix 1

Instructions and Sample Graphs for Plotting Serum Bilirubin (Nice 2010)

Instructions
Click on the 'Treatment threshold graphs' tab to access the graphs. The sheet contains a treatment graph for each gestational age. Before printing, use the drop-down menu that is marked in red to choose the graph for the correct gestational age for each baby with jaundice.

Print off the graph and keep it with the baby’s notes. Plot the baby’s bilirubin level on the graph each time it is measured, against the baby’s age. Assess whether the threshold for either phototherapy or exchange transfusion has been reached. Refer to the NICE neonatal jaundice guideline for detailed recommendations about the treatment of neonatal jaundice.

Sample Graphs:

Bilirubin Thresholds for Phototherapy and Exchange Transfusion in Babies with Hyperbilirubinaemia

Baby's name ___________________________ Date of birth ___________________________
Hospital number ________________________ Time of birth ___________________________
Direct Antiglobulin Test ___________________ 33 weeks gestation

Shade for phototherapy

Total serum bilirubin (micromol/litre)

0 50 100 150 200 250 300 350 400 450 500 550

Multiple Single

Days from birth

Exchange transfusion

Phototherapy

Baby's blood group _________________________ Mother's blood group _________________________

National Institute for Health and Clinical Excellence