Introduction
The intranasal (IN) route of medication administration is a recognised to be a useful and reliable form of drug delivery comparable to oral and parenteral routes. This anatomical, physiological and histological characteristics of the nasal cavity, provides potential for rapid systemic drug absorption and quick onset of action. In addition, intranasal absorption avoids gastrointestinal and hepatic presystemic metabolism, enhancing drug bioavailability when compared to that obtained after gastrointestinal absorption. (Leonard et al, 2007).

Atomized IN administration is achieved by using a product known as a Mucosal Atomiser Device (MAD) Wolfe Tory Medical, Inc, Salt Lake City, Utah. This latex free device attaches directly to a leur-lock syringe and atomizes medication to a particle size of 30 to 100 units.

The IN route can also be used when a patient is unable to take oral medication due to nausea and/or vomiting (Boland 2007). The exact dose can be given and is absorbed by the highly vascular mucous membranes of the nose to the central nervous system. The onset of action is considerably faster that the oral route as it does not require gastrointestinal absorption.

Using the MAD in administering medication reduces the need for obtaining intravenous access which can often be painful and upsetting for the child along with the additional risk of needle stick injury (Shepherd 2007). Delivery of intranasal medication is also relatively painless, inexpensive, and easy to deliver with a minimum of training (Wolfe 2010).

Definition
Intranasal route: the administration of drugs through the nasal passage via an atomiser device.

Indications
There are several theoretical and practical advantages of using the IN route. It is much more accepted by patients as it is less invasive than I.V cannulation or the PR route.

- Oral or IV route unavailable
- For rapid control of breakthrough pain and anxiety in palliative care
- For rapid control of pain in the Emergency department e.g. sickle cell crisis, painful procedures, POP application
- Management of procedural pain and sedation e.g. Burns and wound dressing changes
- Fractures and other trauma cases
- Management of opiate overdose (naloxone)
- Control of seizures (Midazolam)
- Administer Adrenaline

Relative Contradictions
- Age < 2 years as limited data available in this age group. IN route using MAD has been used in neonate sin the palliative care setting, by removing the cone at the end of the device.
- Head, Chest or Abdominal trauma
- Hypovolaemia (Shepherd 2007)
- Allergies to medication

Precautions
- Condition or injury requiring immediate IV access
- URTI as there may be unreliable drug delivery. (may cause unreliable delivery of drug)If the child has a blocked nose or URTI the nasal cavity should be suctioned prior to administration of IN drugs.
- Prior dosing with opioid may produce drug accumulation
- Co-administration of sedatives and co-morbid conditions may require modified dosing
Possible adverse effects
Adverse effects of nasal medications are infrequent. The most common adverse effect noted is nasal burning and irritation and bitter taste after administration of midazolam. Although this discomfort is transient, parents and children should be forewarned of this adverse effect before drug delivery.

Uncommon: nausea, vomiting, sedation (prophylactic antiemetic use is not required)

Guidelines for Equipment (fig 1)

1ml or 2ml syringe
Filter needle to draw up medication
Mucosal atomiser device (MAD) single patient use
Medication

<table>
<thead>
<tr>
<th>Procedure for administration of intranasal medication</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTION</td>
</tr>
<tr>
<td>Explain to patient/parents what you are going to do. All medications must be prescribed and administered as per hospital guidelines. Follow the An Bord Altranais guideline for the safe administration of medication, right drug, right route, right time, right dose, and right patient. Review child’s baseline vital signs before drug administration and if necessary carry out a baseline set of observations.</td>
</tr>
<tr>
<td>Draw up the medication as prescribed by the Doctor and attach the syringe to the atomiser device. Draw up dose plus additional amount 0.1ml for dead space.</td>
</tr>
<tr>
<td>Decontaminate hands and put on disposable gloves</td>
</tr>
<tr>
<td>Attach the atomiser tip via the Luer lock mechanism, it should twist into place. See Fig 2.</td>
</tr>
<tr>
<td>Check the patient’s nostrils for blood or mucous discharge. Suction the nasal passage prior to delivery of medication if necessary. The patient should be reclining at a 45 degrees angle. See Fig 3.</td>
</tr>
<tr>
<td>Using your free hand to hold the crown of the patients head stable, place the tip of the atomiser against the nostril snugly against the nostril aiming slightly up and outward (towards the top of the ear).</td>
</tr>
</tbody>
</table>
For dosages of 1 ml or more the volume should be halved in each nostril. More than one ml per nostril per dose should likely be split and delivered over several cycles separated by 10-15 minutes.

Briskly compress syringe plunger and spray contents quickly into the nostril - medication will expel like a mist in one rapid dose. Hold atomiser for 5-10 seconds after administration.

Encourage the child to sniff as the medication is administered.

Monitor the child closely following administration for signs of adverse symptoms.

If necessary use continuous pulse oximetry, HR monitoring and monitor level of sedation.

If overly sedated (level 3 or above) or abnormal vital signs, inform treating doctor and continue observations and sedation scores until return to baseline.

Document all care given; and evaluate the effectiveness of the drug delivery and record any adverse reactions.

Low volume of nasal cavity restricts amount of drug formulation administered to about 100-150ul. (Pires 2009)

The absorptive surface is doubled if half the dose is put up each nostril.

To facilitate communication, to provide evidence of delivery of quality care, and to ensure evaluation of this care to ensure safe practice and maintain accountability (An Bord Altranais 2007).

References

References

Appendix: dosing guideline for intranasal fentanyl

Table 1. Fentanyl (50mcg/ml) Intranasal Dose of for Weight guide

<table>
<thead>
<tr>
<th>Weight (Kg)</th>
<th>Dosage (1.5mcg/kg)</th>
<th>Volume (ml) + 0.1ml for dead space</th>
<th>Final volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>15 mcg</td>
<td>0.3 ml</td>
<td>0.4 ml</td>
</tr>
<tr>
<td>12</td>
<td>18 mcg</td>
<td>0.35 ml</td>
<td>0.45 ml</td>
</tr>
<tr>
<td>14</td>
<td>20 mcg</td>
<td>0.4 ml</td>
<td>0.5 ml</td>
</tr>
<tr>
<td>16</td>
<td>24 mcg</td>
<td>0.5 ml</td>
<td>0.6 ml</td>
</tr>
<tr>
<td>18</td>
<td>27 mcg</td>
<td>0.55 ml</td>
<td>0.65 ml</td>
</tr>
<tr>
<td>20-24</td>
<td>30mcg</td>
<td>0.6 ml</td>
<td>0.7 ml</td>
</tr>
<tr>
<td>25-29</td>
<td>37.5 mcg</td>
<td>0.75 ml</td>
<td>0.85 ml</td>
</tr>
<tr>
<td>30-34</td>
<td>45 mcg</td>
<td>0.9 ml</td>
<td>1ml**</td>
</tr>
<tr>
<td>35-39</td>
<td>52.5 mcg</td>
<td>1.05 ml</td>
<td>1.15 ml</td>
</tr>
<tr>
<td>40-44</td>
<td>60 mcg</td>
<td>1.2 ml</td>
<td>1.3 ml</td>
</tr>
<tr>
<td>45-49</td>
<td>67.5 mcg</td>
<td>1.35 ml</td>
<td>1.45</td>
</tr>
<tr>
<td>50-54</td>
<td>75 mcg</td>
<td>1.5 ml</td>
<td>1.6 ml</td>
</tr>
<tr>
<td>55-59</td>
<td>82.5 mcg</td>
<td>1.65 ml</td>
<td>1.75ml</td>
</tr>
<tr>
<td>60-64</td>
<td>90 mcg</td>
<td>1.8 ml</td>
<td>1.9 ml</td>
</tr>
<tr>
<td>65-69</td>
<td>97.5 mcg</td>
<td>1.95 ml</td>
<td>2.05 ml</td>
</tr>
</tbody>
</table>

Note *Do NOT draw up 1ml extra for second dose when re-using the delivery device (MAD)*

- A second dose may be administered 10 minutes after the first to provide adequate analgesia - 0.75 - 1.5mcg/kg
- After 2nd dose, if further analgesia is required, review and consider alternative or additional analgesia

Doses of 1ml (50 micrograms) or more should be divided between nares (The volume to be infused limits the use of intranasal fentanyl using MAD device to children under 70kg